Purdue Researchers Develop a Novel Human Brain Model to Study Alzheimer’s Disease

A live image of vascularized neuroimmune organoids. The green signal highlights the vascular structures within the mini brain.
A live image of vascularized neuroimmune organoids. The green signal highlights the vascular structures within the mini brain.

Mimicking key features of sporadic Alzheimer’s, the laboratory model shows promise for understanding the disease and testing new treatments.

Purdue University College of Veterinary Medicine researchers are taking an innovative approach to studying Alzheimer’s disease. Dr. Ranjie Xu, an assistant professor in the Department of Basic Medical Sciences and a member of the Purdue Institute for Integrative Neuroscience, has developed a sophisticated 3D human mini-brain model to reveal new insights into how the disease progresses and to validate promising new treatments.

This spring, his team published a research article on their findings in the Nature journal Molecular Psychiatry.

Dr. Xu and Yanru evaluate staining results from organoids.
Dr. Xu and Yanru evaluate staining results from organoids.

A new tool for sporadic AD

The lab’s new tool is an organoid, an artificially grown mass of cells built from human pluripotent stem cells and mimicking the functions of an organ – in this case, the brain. This type of model is often called a “brain on a chip” or “mini-brains” because it’s a miniaturized laboratory system designed to mimic key aspects of the brain’s structure and function.

The researchers developed the tool specifically for studying sporadic Alzheimer’s disease (sAD), which accounts for more than 95% of AD cases and has no clear genetic cause. Most existing research tools are based on familial Alzheimer’s – a much rarer, inherited form of the disease.

While sporadic AD is the prevailing form of Alzheimer’s, it’s influenced by multiple factors, making it difficult to identify causes and patterns.

“Sporadic AD doesn’t have a clear cause. There are no specific gene mutations,” Dr. Xu says. “It’s really hard to get an sAD model. That’s what we wanted to do here in this study.”

A complex 3D model

The model includes four major brain cell types commonly affected in Alzheimer’s – neurons (nerve cells), astrocytes (star-shaped cells that support and protect neurons), microglia (immune cells that protect the brain) and vascular cells (which help maintain the blood-brain barrier, regulate blood flow and coordinate neural activity).

Putting all these brain cells together into a single 3D model can provide a clearer picture of how Alzheimer’s disease affects the brain, says PhD student and lead author Yanru Ji.

“It’s really hard for a single organoid to incorporate multiple different cell types and mimic AD-related pathologies at the same time,” Ji says. “That’s what we did here – incorporate all four different cell types. This helps us better mimic the brain environment.”

Ji is passionate about neuroscience and wants to pursue a career in academia. She read several of Dr. Xu’s publications while looking into graduate programs. Ji says she was drawn to the complexity and unknowns surrounding Alzheimer’s disease, along with the opportunity to participate in his lab’s novel research approaches.

Promising results on multiple fronts

The researchers tested how well the model mimicked the development of Alzheimer’s in humans and how effective it might be in validating new drugs under development. Results on both fronts were promising.

First, the team exposed the laboratory model to brain extracts from postmortem tissues of individuals with sporadic Alzheimer’s. Within just four weeks, the models developed hallmark features of the disease. They included beta amyloid plaque-like buildup (abnormal clumps of protein fragments that disrupt neural function), tau tangles (twisted fibers of tau protein building up inside neurons), brain inflammation, synaptic loss (deterioration and disappearance of connections between neurons) and impaired neural activity.

Given that the model showed these signs of disease so quickly and strongly, the researchers believe it could be a very efficient tool for studying Alzheimer’s.

While longer culturing times might better reflect aging, Ji says that they were able to induce complex pathology in a short timeframe. Their results suggest that the model can efficiently reproduce key features of the aging brain, even in its current form.

A potential model for drug discovery

Next, the team looked at the model’s potential for validating new Alzheimer’s drugs by testing it with lecanemab. Created by Eisai Co., Ltd.; Biogen Inc.; and BioArctic , the drug has been approved by the FDA and is available in the marketplace. It targets beta amyloid, which are believed to damage brain cells and disrupt communication between neurons in people with Alzheimer’s disease.

The medication reduced amyloid levels in the model while also increasing vascular inflammation, closely mirroring human responses.

“This was one of the things we wanted to try with this model,” Ji says. “We want to build a human, physiologically relevant model for testing.”

While the model is still being refined, Dr. Xu says it shows great promise for evaluating new treatments earlier and more effectively. He has applied for a patent via Purdue Research Foundation.

Xu Laboratory Team: (left to right): Akhil Pinnapareddy, Dongkai Guo, Yanru Ji, Ranjie Xu, Oliver Johnson, Connor Meek, Raymond Pan
Xu Laboratory Team: (left to right): Akhil Pinnapareddy, Dongkai Guo, Yanru Ji, Ranjie Xu, Oliver Johnson, Connor Meek, Raymond Pan

Strong support at Purdue

Dr. Xu received two grants from the National Institutes of Health to support the research project. He also received a Showalter Grant through Purdue’s Office of Research and funding from the Purdue Institute for Integrative Neuroscience. The College of Veterinary Medicine and the Department of Basic Medical Sciences also contributed.

Translational research like Dr. Xu’s aims to bridge the gap between basic science and clinical applications. Dr. Xu says he’s grateful to the university, college, department and the Purdue Institute for Integrative Neuroscience for supporting this kind of bench-to-bedside research, which moves discoveries from the lab to patients faster.

To bolster the team’s ongoing work, the department is outfitting additional space. “Our lab space is relatively limited,” Ji says. A new cell culture room, scheduled to open in the fall, will be located in Lynn Hall near Dr. Xu’s main laboratory. The expansion will allow the team to conduct more experiments and take on bigger projects.

Dr. Xu is currently seeking a postdoctoral researcher to join his team. “We have more exciting work in the future,” he says. The addition of a new researcher signals the growing significance of his team’s work and its potential to provide even more groundbreaking insights into Alzheimer’s disease.

Writer(s): Angela Roberts | pvmnews@purdue.edu

Recent Stories

Purdue Veterinary Medicine’s Connection with Wildlife Rescue in Guatemala Highlighted during International Education Week

Hidden amid the dense forests near the shores of Lake Petén Itzá, the ARCAS Wildlife Rescue Center is one of Central America’s most active sanctuaries for endangered and trafficked wildlife. In addition to their conservation efforts, ARCAS (Asociación de Rescate y Conservación de Vida Silvestre) offers unparalleled hands-on experience for veterinary and biology students from around the world. The Purdue University College of Veterinary Medicine has proudly collaborated with ARCAS for many years, and International Education Week this week (November 16-22) provided the perfect opportunity to showcase this invaluable educational partnership.

Immersive Mixed Reality Experience Helps Purdue Veterinary Students Learn Cardiac Physiology

First year Doctor of Veterinary Medicine students at the Purdue University College of Veterinary Medicine recently stepped into a new era of learning — an immersive Mixed Reality (MR) experience at Purdue’s Envision Center. This cutting-edge session allowed students to interact with a dynamic, 3D representation of the heart, deepening their understanding of cardiac physiology in ways traditional methods cannot match.

Feathered Fame: Purdue Veterinary Medicine Research Featured on Journal Cover

The Department of Veterinary Clinical Sciences (VCS) at Purdue University is proud to announce that a recent study from its anesthesiology team has been selected as the cover feature for Veterinary Sciences (MDPI), Volume 12, Issue 11. Chosen from among 82 articles, the publication highlights the College of Veterinary Medicine’s growing impact in avian clinical research.

“Paws Up” – brought to you by the PVM Wellness Committee

Time to shine a spotlight on some “paws-itively” amazing work by one of our newest Purdue Veterinary Medicine staff members, Jennifer Hartman, VCS Curriculum Technologist in the Department of Veterinary Clinical Sciences.

“Paws Up” – brought to you by the PVM Wellness Committee

Today we are highlighting Rebecca Hoffman, BS, RVT, who is a veterinary technologist with the Bovine Field Service.

Learning Specialist Joins PVM Student Success Center Team

Purdue Veterinary Medicine’s Student Success Center is pleased to welcome Kelsey Luse Spille, who joined the team Monday, November 4, as a learning specialist.  In her new role, she will be supporting students with their academic needs while also serving as a member of the Veterinary Education Support Team (VEST), which assists faculty in developing inclusive teaching practices.

Purdue College of Veterinary Medicine Hosts Reception to Welcome New Dean Bret Marsh

Faculty, staff and students gathered at a reception in the Veterinary Medical Library Friday, November 8, to help extend a warm welcome the new dean of the Purdue University College of Veterinary Medicine, Dr. Bret Marsh.  The event marked the conclusion of the first week on the job for Dr. Marsh, who just started in the role Monday, November 4, after wrapping-up 30 years of service as Indiana State Veterinarian – the state’s top-ranking animal health leader.

Awareness Week to Shine Spotlight on Antimicrobial Resistance Next Week

Antimicrobial resistance (AMR) is a growing, significant One Health issue across the world. The WHO estimates that AMR was directly responsible for 1.27 million global deaths and contributed to 4.95 million deaths, with additional significant economic costs. AMR affects all countries and all income groups, and to tackle this urgent problem, researchers, producers, and practitioners from all areas must address the critical shortage of new antimicrobial drugs, and the use of antimicrobial drugs in medicine, farming, and industry. The week of November 18-24 is US Antibiotic Awareness Week and World AMR Awareness Week, and the College of Veterinary Medicine is taking advantage of these national and global campaigns to raise awareness about AMR and antimicrobial stewardship, and to highlight some of the research and practices being conducted at the college to address AMR.

PVM Faculty Honored for Research Success with Purdue Seed for Success Acorn Awards

When Purdue University’s Office of Research honored the accomplishments and innovative ideas of a host of researchers this week, several Purdue Veterinary Medicine scholars were among those recognized. At a ceremony Wednesday, November 14, in the Purdue Memorial Union North and South Ballrooms, the annual Seed for Success Acorn Awards were presented to Purdue Principal Investigators (PIs) and co-PIs who secured research awards of $1 million or more for a single proposal in fiscal year 2024.

Unlocking the Mysteries of the Brain

Despite more than six decades of research in the field of neuroscience, many functions of the brain — the most complex organ in the human body — remain a mystery. Recent research conducted in the Purdue University College of Veterinary Medicine and the Bindley Bioscience Center revealed that scientists are one step closer to understanding the process that activates and deactivates specific proteins within our cells. This breakthrough could one day lead to enhanced treatments that may slow down or perhaps reverse the advance of neurogenerative diseases such as Alzheimer’s, Parkinson’s and multiple sclerosis.