1. Shi, R., Lucas, J.H., Wolf, A., and Gross, G.W. Calcium antagonists fail to protect mammalian spinal neurons after physical injury. J. Neurotrauma 6:261-275, 1989. doi: 10.1089/neu.1989.6.261
  2. Shi, R. and Belardetti, F. Serotonin inhibits the peptide FMRFamide response through a cyclic AMP-independent pathway in Aplysia. J.Neurophysiology 66:1847-1857, 1991. (Article)
  3. Borgens, R.B., Shi, R., Mohr, T.J. and Jaeger, C.B. Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp. Neurol. 128:41-49, 1994. doi: 10.1006/exnr.1994.1111
  4. Metcalf, M.E., Shi, R. and Borgens, R.B. Endogenous ionic currents and voltages in amphibian embryos. J. Exp. Zool. 268:307-322, 1994. doi: 10.1002/jez.1402680407
  5. Shi, R. and Borgens, R.B. Embryonic neuroepithelial sodium transport, the resulting physiological potential, and cranial development. Dev. Biol. 165:105-116, 1994. doi: 10.1006/dbio.1994.1238
  6. Shi, R. and Borgens, R.B. Three dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202:101-114, 1995. doi: 10.1002/aja.1002020202
  7. Borgens, R.B. and Shi, R. Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the neural tube potential. Dev. Dyn. 203:456-467, 1995. doi: 10.1002/aja.1002030408
  8. Shi, R. and Blight, A.R. Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure. J. Neurophysiol. 76:1572-1580, 1996. (Article)
  9. Coetzee, T., Fujita, N., Shi, R., Blight, A., Suzuki, K. and Popko, B. Myelination in the absence of galatocerebroside and sulfatide: Normal structure with abnormal function and regional instability. Cell 86:209-219, 1996. doi: 10.1016/S0092-8674(00)80093-8
  10. Shi, R. and Blight, A.R. The differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience 77:553-562, 1997. doi: 10.1016/S0306-4522(96)00477-0
  11. Shi, R., Kelly, T.M. and Blight, A.R. Conduction block in acute and chronic spinal cord injury: different dose response characteristics for reversal by 4-aminopyridine. Exp. Neurol. 148: 495-501, 1997. doi: 10.1006/exnr.1997.6706
  12. Shi, R. and Borgens, R.B. Acute repair of crushed guinea pig spinal cord by polyethylene glycol. J. Neurophysiol. 81:2406-2414, 1999. (Article)
  13. Shi, R., Blight, A.R. and Borgens, R.B. Functional reconnection of severed mammalian spinal cord axons by a molecular surfactant. J. Neurotrauma 16:727-738, 1999. doi: 10.1089/neu.1999.16.727
  14. Borgens, R.B. and Shi, R. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J. 14: 27-35, 2000. (Article)
  15. Shi, R. and Pryor, J.D. Temperature dependence of membrane sealing in mammalian spinal cord axons. Neuroscience 98: 157-166, 2000. doi: 10.1016/S0306-4522(00)00096-8
  16. Shi, R., Asano, T., Vining, N.C. and Blight, A.R. Controls of membrane sealing in injured mammalian spinal cord axons. J. Neurophysiol. 84: 1763-1769, 2000. (Article)
  17. Shi, R. and Borgens, R.B. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J. Neurocytol. 29:633-643 2000. doi: 10.1023/A:1010879219775
  18. Shi, R., Qiao, X., Emerson, N. and Malcom, A. Dimethylsulfoxide enhances CNS neuronal plasma membrane resealing after injury in low temperature or low calcium. J. Neurocytol. 30: 829-839, 2001. doi: 10.1023/A:1019645505848
  19. Borgens R.B., Shi, R. and Bohnert, D.M. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J. Exp. Bio. 205: 1-12, 2002. (Article)
  20. Donaldson, J., Shi, R. and Borgens, R.B. Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of the guinea pig. Neurosurgery 50: 147-157, 2002. (Article)
  21. Shi, R. and Pryor J.D. Pathological changes of isolated spinal cord axons in response to mechanical stretch. Neuroscience 110: 765-777, 2002. doi: 10.1016/S0306-4522(01)00596-6
  22. Peasley, M.A. and Shi, R. Resistance of isolated mammalian spinal cord white matter to oxygen-glucose deprivation. Am. J. Physiol. 283: C980-C989, 2002. doi: 10.1152/ajpcell.00591.2001
  23. Luo, J., Li, N., Robinson, J.P. and Shi, R. The increase of reactive oxygen species and their inhibition in an isolated guinea pig spinal cord compression model. Spinal Cord 40: 656-665, 2002. doi: 10.1038/
  24. Shi, R., Luo, J. and Peasley, M.A. Acrolein inflicts axonal membrane disruption and conduction loss in isolated guinea pig spinal cord. Neuroscience 115: 337-340, 2002. doi: 10.1016/S0306-4522(02)00457-8
  25. Luo, J., Li, N., Robinson, J. P. and Shi, R. Detection of reactive oxygen species by flow cytometry after spinal cord injury. J. Neuroscience Meth. 120: 105-112, 2002. doi: 10.1016/S0165-0270(02)00193-0
  26. Luo, J., Borgens, R.B. and Shi, R. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J. Neurochem. 83: 421-480, 2002. doi: 10.1046/j.1471-4159.2002.01160.x
  27. McKenzie, J.L., Cardona, B.E., Shi, R., and Webster, T.J. Cytocompatibility of carbon nanofibers for use as a neural biomaterial, Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 3: 2119-2120, 2002. doi: 10.1109/IEMBS.2002.1053197
  28. McNally, H., Kufluoglu, H., Akin, D., Grimmer, J., Walker, J., Shi, R., Borgens, R., and Bashir, R. A chemical sensor using neurons and a 3-D micro-fluidic chip. Materials Research Society Symposium - Proceedings, 741: 247-252, 2002. doi: 10.1557/PROC-741-J11.2
  29. Ninan, L., Monahan, J., Stroshine, R.L., Wilker, J.J. and Shi, R. Adhesive strength of marine mussel extracts on porcine skin. Biomaterials 24: 4091-4099, 2003. doi: 10.1016/S0142-9612(03)00257-6
  30. Jensen, J.M., and Shi, R., Effects of 4-Aminopyridine on stretched mammalian spinal cord: The role of potassium channels in axonal conduction. J. Neurophysiol. 90:2334-2340, 2003. doi: 10.1152/jn.00868.2002
  31. Peasley, M.A., and Shi, R., Ischemic insult exacerbates acrolein-induced conduction loss and axonal membrane conduction in guinea pig spinal cord white matter. J. Neurol. Sci. 216:23-32, 2003. doi: 10.1016/S0022-510X(03)00201-6
  32. McKenzie, J.L., Waid, M.C., Shi, R., Webster, J. Cytocompatibility of Carbon Nanofiber Materials for Neural Applications. Materials Research Society Symposium - Proceedings, 774: 17-22, 2003.
  33. McKenzie, J.L., Waid, M.C., Shi, R., Webster, T.J. Cytocompatibility and Material Properties of Poly-carbonate Urethane/ Carbon Nanofiber Composites for Neural Applications, Materials Research Society Symposium - Proceedings, 774: 23-28, 2003.
  34. McKenzie, J.L., Waid, M.C., Shi, R., and Webster, T.J., Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 25:1309-1317, 2004. doi: 10.1016/j.biomaterials.2003.08.006
  35. Luo, J., and Shi, R., Acrolein induces axolemmal disruption, oxidative stress, and mitochondrial impairment in spinal cord tissue. Neurochemistry International 44:475-486, 2004. doi: 10.1016/j.neuint.2003.09.006
  36. Shi, R., The dynamics of axolemmal disruption in guinea pig spinal cord following compression. J. Neurocytology 33:203-211, 2004. doi: 10.1023/B:NEUR.0000030695.76840.19
  37. Luo, J., and Shi, R., Diffusive oxidative stress following acute spinal cord injury and the inhibition by polyethylene glycol. Neuroscience Letters 359:167-170, 2004. doi: 10.1016/j.neulet.2004.02.027
  38. Coots, A., Shi, R., and Rosen, A.D., Effects of a 0.5 T static magnetic field on conduction in guinea pig spinal cord. J. Neurol. Sci. 222:54-57, 2004. doi: 10.1016/j.jns.2004.04.010
  39. Luo, J., Borgens, R.B., and Shi, R., Polyethylene glycol improves function and reduces oxidative stress in synaptosomes following spinal cord injury. J. Neurotrauma 21:994-1007, 2004. doi: 10.1089/0897715041651097
  40. McKenzie, J.L., Shi, R., Kalkhoran, N.M., Sambito, M.A., Webster, T.J. Analysis of carbon nanofibers and porous silicon for neural applications. Proceedings of the IASTED International Conference on Biomedical Engineering, 557-560, 2004.
  41. McKenzie, J.L., Shi, R., Webster, T.J. Increased neurite extension for neurons cultured on carbon nanofiber compacts. Transactions - 7th World Biomaterials Congress, 284, 2004.
  42. McKenzie, J.L., Shi, R., Kalkhoran, N.M., Sambito, M.A., Webster, T.J. In vitro analysis of carbon nanofiber and mesoscale porous silicon materials with nanoscale roughness for neural applications. Materials Research Society Symposium Proceedings, EXS (1), 311-316, 2004.
  43. Riyi Shi. Axonal membrane disruption and repair: significance in brain and spinal cord trauma (invited review). Progress in Neuroscience, 3: 146-156, 2004
  44. McKenzie, J.L., Shi, R., Webster, T.J., Material design for neural applications using carbon nanofibers. Medical Device Materials II. Proceedings of the Materials and Processes for Medical Devices Conference 2004, 159-164, 2005.
  45. Cole, A., and Shi, R., Prolonged focal application of polyethylene glycol induces conduction block in guinea pig spinal cord white matter. Toxicology in vitro 19:215-220, 2005. doi: 10.1016/j.tiv.2004.10.007
  46. Luo, J., and Shi, R., Acrolein induces oxidative stress in brain mitochondria. Neurochemistry International 46:243-252, 2005. doi: 10.1016/j.neuint.2004.09.001
  47. Luo, J., Uchida, K., and Shi, R., Accumulation of acrolein-protein adducts after traumatic spinal cord injury. Neurochemical Research. 30:291-295. 2005. doi: 10.1007/s11064-005-2602-7
  48. Logan, M.P., Parker, S., and Shi, R., Glutathione and ascorbic acid enhance recovery of guinea pig spinal cord white matter following ischemia and acrolein exposure. Pathobiology. 72: 171-178. 2005.  doi: 10.1159/000086786
  49. Smith, D.T., Shi, R., Borgens, R.B., McBride, J., Jackson, K., and Byrn, S.B., Development of novel 4-aminopyridine derivatives as potential treatments for neurological injury and disease. European Journal of Medicinal Chemistry. 40: 908-917. 2005. doi: 10.1016/j.ejmech.2005.04.017
  50. Wang, H., Fu, Y., Zickmund, P., Shi, R., Cheng, J., Coherent Anti-Stokes Raman Scattering imaging of axonal myelin in live spinal tissues. Biophysical Journal. 89:1-11. 2005.  doi: 10.1529/biophysj.105.061911
  51. Luo, J., Robinson, J.P. and Shi, R. Acrolein-induced cell death in PC 12 cells: role of mitochrondria-medicated oxidative stress. Neurochemistry International. 47:449-457 2005. doi: 10.1016/j.neuint.2005.07.002
  52. McBride, J. M., Smith, D. T., Byrn, S. R., Borgens, R. B. and Shi, R. Dose responses of three 4-aminopyridine derivatives following spinal cord trauma. European J. Pharmaceut. Sci. 27: 237-242. 2006 . doi: 10.1016/j.ejps.2005.10.003
  53. Shi, R And Luo, J. The Role Of Acrolein In Spinal Cord Injury (Invited Review). Applied Neurology: 2: 22-27. 2006.
  54. Shi, R. and Whitebone, J. Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain. J. Neurophysiol. 95, 3384-3390. 2006. doi: 10.1152/jn.00350.2005
  55. Fu, Y., Wang, H., Shi, R., and Cheng, J. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Optics Express. 14: 3942-3951. 2006 doi: 10.1364/OE.14.003942
  56. Pryor, J. D. and Shi, R. Electrophysiological changes in isolated spinal cord white matter in response to oxygen deprivation. Spinal Cord. 44: 653-661. 2006. doi: 10.1038/
  57. Li, M. and Shi. R. A device for the electrophysiological recording of peripheral nerves in response to stretch. J. Neurosci. Meth. 154: 102-108. 2006. doi: 10.1016/j.jneumeth.2005.12.007
  58. Liu-Snyder, P., Mcnally, H. Shi, R. And Borgens, R. B. Acrolein - Mediated Mechanisms Of Neuronal Death. J. Neurosci. Res. 84: 209-218. 2006. doi: 10.1002/jnr.20863
  59. Liu-Snyder, P., Borgens, R. B. And Shi, R. Hydralazine Rescues Pc 12 Cells From Acrolein-Mediated Death. J. Neurosci. Res. 84: 219-227. 2006. doi: 10.1002/jnr.20862
  60. Davies, A. L., Hayes, K. C. And Shi, R. Recombinant human tnfα induces concentration-dependent reversible alteration in axonal conduction in mammalian spinal cord. J. Neurotrauma. 23: 1261-73. 2006. doi: 10.1089/neu.2006.23.1261
  61. Ashki, N., Hayes, K. C. and Shi, R. Nitric oxide reversibly impairs axonal conduction in guinea pig spinal cord. J. Neurotrauma. 23: 1779-1793. 2006. doi: 10.1089/neu.2006.23.1779
  62. Riyi Shi. Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury (invited review). Progress in Neuroscience, 4, 2006.
  63. Li, M. and Shi, R. Stretch induced conduction deficits in Guinea Pig ex-vivo nerve J. Biomechanics. 40: 569-578. 2007. doi: 10.1016/j.jbiomech.2006.02.009
  64. Fu, Y., Wang, H., Shi, R., and Cheng. J. Noninvasive molecular imaging of intact myelin sheath by coherent anti-stokes raman scattering microscopy. American Biotechnology laboratory. 25: 12-13. 2007.
  65. Liu-Snyder, P., Logan, M.P., Shi, R., Smith D.T., and Borgens, R. B. Neuroprotection from secondary injury by polyethylene glycol requires its intracellular presence. Journal Experimental Biology. 282: 13073-86. 2007. doi: 10.1242/jeb.02756
  66. Fu, Y., Wang, H., Shi, R., and Cheng, J. Second Harmonic and Sum Frequency Generation Imaging of Fibrous Astroglial Filaments in ex vivo Spinal Tissues. Biophysical J. 92: 3251-9. 2007. doi: 10.1529/biophysj.106.089011
  67. Nehrt, A, Rodgers, R, Shapiro, S, Borgens, R, and Shi, R. The Critical role of voltage-dependent calcium channel in axonal repair following mechanical trauma. Neuroscience. 146: 1504-1512. 2007. doi: 10.1016/j.neuroscience.2007.02.015
  68. Ninan, L., Stroshine, R.L., Wilker, J.J. and Shi, R. Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa (SIS). Acta Biomaterialia. 3:687-694. 2007. doi: 10.1016/j.actbio.2007.02.004
  69. Luo, J., and Shi, R. Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Brain Research. 1155: 10-16. 2007. doi: 10.1016/j.brainres.2007.03.091
  70. Fu, Y., Wang, H., Huff, T, Shi, R., and Cheng, C. Coherent Anti-Stokes Raman Scattering Imaging of Myelin Degradation Reveals a Calcium Dependent Pathway in Lyso-PtdCho Induced Demyelination. J. Neurosci. Res. 85:2870-2881. 2007. doi: 10.1002/jnr.21403
  71. Galle, B., Ouyang, H., Shi, R., and Nauman, E. Correlation between tissue-level stress and strains and cellular damage within the guinea pig spinal cord white matter. J. Biomechanics. 40: 3029-3033. 2007. doi: 10.1016/j.jbiomech.2007.03.014
  72. McBride, J. M., Smith, D. T., Byrn, S. R., Borgens, R. B. and Shi, R. 4-Aminopyridine Derivatives Enhance Impulse Conductionin Guinea Pig Spinal Cord Following Traumatic Injury. Neuroscience. 148: 44-52. 2007. doi: 10.1016/j.neuroscience.2007.05.039
  73. Li, M. and Shi, R. Fabrication of Patterned Multi-walled Poly-L-Lactic Acid Conduits for Nerve Regeneration. Journal Neuroscience Method. 165: 257-264. 2007. doi: 10.1016/j.jneumeth.2007.06.006
  74. Hamann, K., Nehrt, G., Ouyang, H., Duerstock, D. and Shi, R. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. Journal of Neurochemistry. 104: 708-718. 2008. doi: 10.1111/j.1471-4159.2007.05002.x
  75. Ouyang, H., Galle, B., Li, J., Nauman, E., and Shi, R. Biomechanics of spinal cord injury: a multimodal investigation using ex vivo guinea pig spinal cord white matter. Journal of Neurotrauma. 25: 19-29. 2008. doi: 10.1089/neu.2007.0340
  76. Li, M., McNally, H. and Shi, R. Enhanced neurite alignment on micro-patterned poly-L-Lactic Acid films. Journal of Biomedical Materials Research: Part A. 87: 392-404. 2008. doi: 10.1002/jbm.a.31814
  77. Li, M, Rickett, T., and Shi R. Peripheral Nervous System Repair: Current Progress and Future Trends in Axonal Regeneration and Guidance (invited review). Progress in Neuroscience, 5. 2008.
  78. Cho, Y., Shi, R., Borgens, R., and Ivanisevic, A. The Functionalized Mesoporous Silica Nanoparticles (MSNs) Based Drug Delivery System to Rescue Acrolein-Mediated Cell Death. Nanomedicine. 3: 507-519. 2008. doi: 10.2217/17435889.3.4.507
  79. Cho, Y., Shi, R., Borgens, R and Ivanisevic, A. Repairing the damaged spinal cord and brain with nanomedicine. Small. 4: 1676-1681.2008. doi: 10.1002/smll.200800838
  80. Hamann, K., Durkes, A., Ouyang, H., Uchida K, Pond, A., and Shi, R. Critical Role of acrolein in secondary injury following ex vivo spinal cord trauma. J. Neurochemistry. 107: 712-721. 2008. doi: 10.1111/j.1471-4159.2008.05622.x
  81. Sun, W., Smith, D., Bryn, S., Borgens, R, and Shi, R. N-(4-pyridyl) methyl carbamate inhibits fast potassium currents in guinea pig dorsal root ganglion cells. Journal of Neurological Sciences. 277: 114-118. 2009. doi: 10.1016/j.jns.2008.10.028
  82. Ouyang, H., Galle, B., Li, J., Nauman, E., and Shi, R. Critical roles of decompression in functional recovery of ex vivo spinal cord white matter. Journal of Neurosurgery Spine. 10: 161-170. 2009. doi: 10.3171/2008.10.SPI08495
  83. Li, J., Rickett, T., and Shi, R. Biomimetic nerve scaffolds with aligned intraluminal microchannels: a sweet approach to tissue engineering. Langmuir. 25: 1813-1817. 2009. doi: 10.1021/la803522f
  84. Chen, H., Quick, E., Leung, G., Hamann, K., Fu, Y., Cheng, J and Shi, R. Polyethylene Glycol protects injured neuronal mitochondria. Pathobiology . 76: 117-128, 2009. doi: 10.1159/000209389
  85. Rickett, T., Li, M., Patel, M., Sun, W., Leung, G., and Shi, R. Ethyl-Cyanoacrylate is Acutely Non-Toxic and Provides Sufficient Bond Strength for Anastomosis of Peripheral Nerves. Journal of Biomedical Materials Research: Part A. 90:750-4. 2009. doi: 10.1002/jbm.a.32137
  86. Cho, Y., Shi, R., Ivanisevic, A., and Borgens. A mesoporous silica nanosphere-based drug delivery system using electrically condcting polymer. Nanotechnology. 20: 275102. 2009. doi: 10.1088/0957-4484/20/27/275102
  87. Fu, Y., Sun, W., Shi, Y. Shi*, R, and Cheng*, J. "Glutamate excitotoxicity inflicts paranodal myelin splitting and retraction." PLoS ONE, 4(8): e6705. doi:10.1371/journal.pone.0006705, 2009. *: Co-correspondent author.
  88. Hamann, K., and Shi, R. Acrolein scavenging: A potential novel mechanism of attenuating oxidative stress following spinal cord injury (invited review). J. Neurochem. 111: 1348-1356. 2009. doi: 10.1111/j.1471-4159.2009.06395.x
  89. Rickett T, Amoozgar Z, Sun W, Yeo Y, Shi R. A photo-crosslinkable chitosan hydrogel for peripheral nerve anastomosis.In: Shi R, Fu W, Wang Y, Wang H, editors. Proceedings of the Second International Conference on Biomedical Engineering and Informatics; 2009 Oct 17-19; Tianjin, China. Piscataway(NJ): IEEE eXpress Conference Publishing; c2009. doi: 10.1109/BMEI.2009.5305460
  90. T. Rickett, S. Connell,J. Bastijanic, and R. Shi, "Tensile Physiology Measuring Force and Conduction in Peripheral Nerves Undergoing Controlled Stretch ," in BioMedical Engineering and Informatics, 2009. BMEI 2009. International Conference on Biomedical Engineering. doi: 10.1109/BMEI.2009.5305814
  91. S. Connell, H. Ouyang, and R. Shi, Modeling Primary Blast Injury in Isolated Spinal Cord White Matter, In: Shi R, Fu W, Wang Y, Wang H, editors. Proceedings of the Second International Conference on Biomedical Engineering and Informatics; 2009 Oct 17-19; Tianjin, China. Piscataway(NJ): IEEE eXpress Conference Publishing; c2009. doi: 10.1109/BMEI.2009.5305363
  92. Shi, Y, Kim, S., Huff, T., Borgens, R., Park, K., Shi, R., and Cheng, J. Effective repair of traumatically injured spinal cord by block copolymer micelles: A pilot study. Nature Nanotechnology. 5: 80-87, 2010. doi: 10.1038/nnano.2009.303
  93. Sun, W., Smith, D., Fu, Y., Cheng, J., Bryn, S., Borgens, R. and Shi, R. "A novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter." Journal of Neurophysiol. 103: 469-478. 2010. doi: 10.1152/jn.00154.2009
  94. Nehrt, A, Hammann, K., Ouyang, H., and Shi, R. Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord. Journal of Neurotrauma. 27: 151-161, 2010. doi: 10.1089/neu.2009.0993
  95. Cho*, Y., Shi*, R., and Borgens, R. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. Journal of Biological Engineering. 4:2, 2010. *: equal contribution. doi: 10.1186/1754-1611-4-2
  96. T. Rickett, S. Connell,J. Bastijanic, S. Hegde, and R. Shi, "Functional and Mechanical Evaluation of Nerve Stretch Injury," Journal of Medical Systems.35: 787-793, 2011. doi: 10.1007/s10916-010-9468-1
  97. S. Connell, H. Ouyang, and R. Shi, Modeling Blast Induced Neurotruama in Isolated Spinal Cord White Matter. Journal of Medical Systems. 35: 765-770, 2011. doi: 10.1007/s10916-010-9464-5
  98. Li, L., and Shi, R. Biomimetic materials for engineering of neural tissues: Control of cell adhesion and guiding neural cell outgrowth with peptide-conjugated polymer structures. Biologically Responsive Hybrid Biomaterials. (ed. Jabbari, E., and Khademhosseini, A.), Artech House Publishers, Boston, USA.
  99. Li, L., Cornell, S. and Shi, R. Biomimetic Architectures for Tissue Engineering. Biomimetics, Learning from nature. Artech House Publishers, Boston, USA. doi: 10.5772/8773
  100. Cho, Y., Shi, R., Ivanisevic, A., and Borgens, R. Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury. J. Neurosci. Res. 88, 1433-1444. 2010. doi: 10.1002/jnr.22309
  101. Cho, Y., Shi, R., and Borgens, R. Chiotosan produces potent Neuroprotection and physiological recovery following traumatic spinal cord injury. Journal of Experimental Biology. 213, 1513-1520. 2010. doi: 10.1242/jeb.035162
  102. Ouyang, H., Sun, W., Fu, Y., Li, J., Cheng, J., Nauman, E., and Shi, R. Compression induces acute demyelination and potassium channel exposure in spinal cord. J. Neurotrauma. 27: 1109-20. 2010. doi: 10.1089/neu.2010.1271
  103. Galle, B., Ouyang, H., Shi, R., and Nauman, E. A transversely isotropic constitutive model of excised guinea pig spinal cord white matter. J. Biomechanics. 43: 2839-43. 2010. doi: 10.1016/j.jbiomech.2010.06.014
  104. Leung, G., Sun , W., Zheng, L., Brookes, S, Tully, M., and Shi, R. Anti-acrolein treatment improves behavioral outcome and alleviates myelin damage in EAE mouse. Neuroscience. 173: 150-155, 2011. doi: 10.1016/j.neuroscience.2010.11.018
  105. Li, J., Kong, X., Gozani, S., Shi, R., and Borgens, B. Current-distance relationship for Peripheral Nerve stimulation localization. Anesth Analg 112: 236-241, 2011. doi: 10.1213/ANE.0b013e3181fca16b
  106. Leung, G., Sun , W., Brookes, S, Smith, D., Shi, R. Potassium channel blocker, 4-Aminopyridine-3-Methanol, restores axonal conduction in spinal cord of an animal model of multiple sclerosis. Experimental Neurology 227:232-235, 2011. doi: 10.1016/j.expneurol.2010.11.004
  107. Shi, R. and Sun W. Potassium channels blockers as effective treatment to restore impulse conduction in injured axons (invited review). Neuroscience Bulletin. 27: 36-44, 2011. doi: 10.1007/s12264-011-1048-y
  108. Rickett, T., Amoozgar, Z., Tuchek, C., Park, J., Yeo, Y. and Riyi Shi. Rapidly Photo-Cross-Linkable Chitosan Hydrogel for Peripheral Neurosurgeries. Biomacromolecules. 12: 57-65, 2011. doi: 10.1021/bm101004r
  109. Wang, H., Manicke, N.E., Yang, Q., Zheng, L., Shi, R., Cooks, R.G. and Ouyang, Z. Direct analysis of biological tissue by paper spray mass spectrometry. Anal Chem. 83: 1197-201, 2011. doi: 10.1021/ac103150a
  110. Huang, J., Chen, J., Wang, W., Wang, Y., Wang, W., Wei, Y., Shi, R., Kaneko, T., Li, Y. and Wu, S. Expression Pattern of Enkephalinergic Neurons in the Developing Spinal Cord Revealed by Preproenkephalin-Green Fluorescent Protein Transgenic Mouse and Its Colocalization with GABA Immunoreactivity. Cells Tissues Organs. 193: 404-416. 2011. doi: 10.1159/000321403
  111. Shi, Y, Huff, T; Sun, W, Shi, R, and Cheng, J. Real-time CARS Imaging Reveals a Calpain-dependent Pathway for Paranodal Myelin Retraction during High-Frequency Stimulation. PLoS ONE. 2011 Mar 3;6(3):e17176. doi: 10.1371/journal.pone.0017176
  112. Shi, Y., Sun, W., McBride, J., Cheng, J. and Shi, R. Acrolein induces myelin damage in mammalian spinal cord. J. Neurochem. 117: 554-564, 2011. doi: 10.1111/j.1471-4159.2011.07226.x
  113. Connell, S., Gao, J., Chen, J., and Shi, R. Novel model to investigate blast injury in the central nervous system. J Neurotrauma. 28: 1229-1236, 2011. doi: 10.1089/neu.2011.1832
  114. Shi, R., Rickett, T., and Sun, W. Acrolein-mediated injury in nervous system trauma and diseases (invited review). Molecular nutrition and food research. 55: 1320-1331, 2011. doi: 10.1002/mnfr.201100217
  115. Shi, Y., Zhang, D., Huff, T., Wang, X., Shi, R., Xu, X., and Cheng, J. Longitudinal In Vivo CARS Imaging of Demyelination and Remyelination in Injured Spinal Cord. Journal of Biological Optics. 16: 106012, 2011. doi: 10.1117/1.3641988
  116. Sun, W., Fu, Y., Shi, Y., Cheng, J., Cao, P., and Shi, R. Paranodal myelin damage following acute stretch in guinea pig spinal cord. J Neurotrauma. 29: 611-9, 2012. doi: 10.1089/neu.2011.2086
  117. Amoozgar, Z., Rickett, T., Park, J., Tuchek, C., Shi, R* and Yoon Yeo*. Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ forming nerve adhesive. Acta Biomaterialia 8: 1849-58, 2012. doi: 10.1016/j.actbio.2012.01.022 *: co-correspondent authors.
  118. Connell, S., Li, J., and Shi., R. Synergistic Bactericidal Activity between Hyperosmotic Stress and Membrane Disrupting Nanoemulsions. J. Med. Microbil. 62: 69-77, 2013. doi: 10.1099/jmm.0.047811-0
  119. Babbs, C and Shi, R. Subtle Paranodal Injury Slows Impulse Conduction in a Mathematical Model of Myelinated Axons. PLoS ONE 8(7): e67767. doi:10.1371/journal.pone.0067767, 2013.
  120. Zheng, L., Park, J., Walls, M., Tully, M., Jannasch, A., Cooper, B., and Shi, R. Determination of urine 3-HPMA, a stable acrolein metabolite in rat model of spinal cord injury. J Neurotrauma, 30: 1334-41, 2013. doi: 10.1089/neu.2013.2888
  121. Shi, R. Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury (invited review). Neuroscience Bulletin. 29: 460-466, 2013. doi: 10.1007/s12264-013-1364-5
  122. Ouyang, H., Nauman, E., and Shi, R. Contribution of cytoskeletal elements to the axonal mechanical properties. Journal of Biological Engineering. 7: 21, 2013. doi: 10.1186/1754-1611-7-21
  123. Tully, M. and Shi, R. New insights in the pathogenesis of multiple sclerosis-role of acrolein in neuronal and myelin damage (invited review). Int. J. Mol. Sci. 14: 20037-20047, 2013. doi: 10.3390/ijms141020037
  124. White-Schenk D, Shi R. and Leary JF. Mesoporous silica nanoparticles for treating spinal cord injury. SPIE BiOS. 2013. International Society for Optics and Photonics. doi: 10.1117/12.2004916
  125. Wang, H., Ren, Y., McLuckey, M., Manicke, N., Park, J., Zheng, L., Shi, R., Cooks, R., Ouyang, Z. Direct Quantitative Analysis of Nicotine Alkaloids from Biofluid Samples using Paper Spray Mass Spectrometry. Analytical Chemistry. 2013, 85, 11540-11544. doi: 10.1021/ac402798m
  126. Ochoa, M., Rahimi, R., Ziaie, B. and Shi, R. An impact sensing platform for spinal cord injury experiments. Sensors, 2013 IEEE. doi: 10.1109/ICSENS.2013.6688175
  127. Chen, C., Lin, Z., Garimella, S., Zheng, L.,; Shi, R., Cooks, R., Ouyang, Z.
    Development of a Mass Spectrometry Sampling Probe for Chemical Analysis in Surgical and Endoscopic Procedures. Analytical Chemistry. 85: 11843-11850, 2013. doi: 10.1021/ac4025279
  128. Due M., Park J., Zheng L., Walls M., Allette Y., White F. and Shi R. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat. J Neurochemistry. 128:776-786, 2014. doi: 10.1111/jnc.12500 *equal contribution.
  129. Cao P., Zheng Y., Zheng T., Sun C., Lu J., Rickett T. and Shi R. A model of acute compressive spinal cord injury with a minimally invasive balloon in goats. Journal of Neurological Sciences. 337:97-103, 2014. doi: 10.1016/j.jns.2013.11.024
  130. Park, J, Zheng, L., Marquis, A., Walls, M., Duerstock, B., Pond, A., Vega Alvarez, S., Wang, H., Ouyang, Z. and Shi, R. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage. Journal of Neurochemistry. 129: 339-349, 2014. doi: 10.1111/jnc.12628
  131. Hendricks B. and Shi, R. Mechanisms of neuronal membrane sealing following mechanical trauma. Neuroscience Bulletin. 9: 677-683, 2014. doi: 10.1007/s12264-013-1446-4
  132. Park, J., Muratori, B., and Shi, R. Acrolein as a novel therapeutic target for motor and sensory deficits in spinal cord injury (invited review). Neural Regeneration Research. 9: 667-683, 2014. doi: 10.4103/1673-5374.131564
  133. Tully, M., Zheng, L. and Shi, R., Acrolein detection: Potential theranostic utility in multiple sclerosis and spinal cord injury (invited review). Expert review of Neurotherapeutics. 14: 679-685, 2014. doi: 10.1586/14737175.2014.918849
  134. Tully, M., Zheng, L. Acosta G., Tian, R., and Shi, R., Acute systemic accumulation of acrolein through inhalation at a concentration relevant to cigarette smoke in mice. Neuroscience Bulletin. 30: 1017-1024, 2014. doi: 10.1007%2Fs12264-014-1480-x
  135. Chen, J. & Shi, R. Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair. Neural Regeneration Research. 9: 1093-1095, 2014. doi: 10.4103/1673-5374.135306
  136. White-Schenk, D., Shi, R., & Leary, J. F. Nanomedicine strategies for treatment of secondary spinal cord injury. International Journal of Nanomedicine. 10: 923-938, 2014. doi: 10.2147/IJN.S75686
  137. White-Schenk, D., Shi, R., & Leary, J. F. Interactions of silica nanoparticles with therapeutics for oxidative stress attenuation in neurons.  Proceedings of SPIE, 2015. doi: 10.1117/12.2076048
  138. Shi, R., Page, J., & Tully, M. Molecular mechanisms of acrolein-mediated myelin destruction in CNS trauma and disease. Free Radical Research. 49: 888-895. doi 10.3109/10715762.2015.1021696
  139. Chien-Hsun, C., Lin, Z., Tian, R., Shi, R., Cooks, R. G., & Ouyang, Z. Real-time sample analysis using a sampling probe andminiature mass spectrometer. Analytical Chemistry. 87: 8867-8873, 2015. doi: 10.1021/acs.analchem.5b01943
  140. Song, S., Race, N. S., Kim, A., Zhang, T., Shi, R., & Ziaie, B. A wireless intracranial brain deformation sensing system for blast-induced traumatic brain injury. Scientific Reports. 5: 16959, 2015. doi: 10.1038/srep16959
  141. Park, J., Zheng, L., Acosta, G., Vega-Alvarez, S., Chen, Z., Muratori, B., Cao, P., & Shi, R. Acrolein contributes to TRPA1 up-regulation in peripheral and central sensory hypersensitivity following spinal cord injury. Journal of Neurochemistry. 135: 987-997, 2015. doi: 10.1111/jnc.13352
  142. Yan, R., Page, J. C., & Shi, R. Acrolein-mediated conduction loss is partially restored by K+ channel blockers. Journal of Neurophysiology. 115: 701-710, 2016. doi: 10.1152/jn.00467.2015
  143. Wang, H., Zhang, Y. P., Cai, J., Shields, L. B., Tucheck, C. A., Shi, R., Li, J., Shields, C. B., & Xu, X. M. A compact blast-induced traumatic brain injury model in mice. Journal of Neuropathology & Experimental Neurology. 75: 183-196, 2016. doi: 10.1093/jnen/nlv019
  144. Ma, X., Chong, L., Tian, R., Shi, R., Hu, T. Y., Ouyang, Z., & Xia, Y. Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proceedings of the National Academy of Sciences of the United States of America. 113: 2573-2578, 2016. doi: 10.1073/pnas.1523356113
  145. Walls, M. K., Race, N., Zheng, L., Vega-Alvarez, S. M., Acosta, G., Park, J., & Shi, R. Structural and biochemical abnormalities in the absence of acute deficits in mild primary blast-induced head trauma. Journal of Neurosurgery. 124: 675-686, 2016. doi: 10.3171/2015.1.JNS141571
  146. Gianaris, A., Liu, N. K., Wang, X.F., Oakes, E., Brenia, J., Gianaris, T., Ruay, Y., Deng, L. X., Goetz, M., Vega-Alvarez, S., Lu, Q. B., Shi, R., & Xu, X. M. Unilateral microinjection of acrolein into thoracic spinal cord produces acute and chronic injury and functional deficits. Neuroscience. 326: 84-94, 2016. doi: 10.1016/j.neuroscience.2016.03.054
  147. Connell, S., Li, J., Durkes, A., Zaroura, M., & Shi, R. Nondermal irritating hyperosmotic nanoemulsions reduce treatment times in a contamination model of wound healing. Wound Repair and Regeneration. 24: 669-678, 2016. doi: 10.1111/wrr.12436
  148. Cheng, Z., Park, J., Butler, B., Acosta, G., Vega-Alvarez, S., Zheng, L., Tang, J., McCain, R., Zhang, W., Ouyang, Z, Cao, P., & Shi, R. Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury. Journal of Neurochemistry. 138: 328-338, 2016. doi: 10.1111/jnc.13639
  149. Page, J. C. & Shi, R. Potassium channel blockers restore axonal conduction in CNS trauma and disease. Neural Regeneration Research. 11: 1226-1227, 2016. doi: 10.4103/1673-5374.189172
  150. Sangster, A. M., Zheng, L., Bentley, R. T., Shi, R., & Packer, R. A. Urinary 3-hydroxypropyl mercapturic acid (3-HPMA) concentrations in dogs with acute spinal cord injury due to intervertebral disc herniation. The Veterinary Journal. 219: 12-14, 2017. doi: 10.1016/j.tvjl.2016.11.016
  151. Leung, G., Tully, M., Tang, J., Wu, S., & Shi, R. Elevated axonal membrane permeability and its correlation with motor deficits in an animal model of multiple sclerosis. Translational Neurodegeneration. 6: 5, 2017. doi: 10.1186/s40035-017-0075-7
  152. Race, N., Lai, J., Shi, R., & Bartlett, E. L. Differences in post-injury auditory system pathophysiology after mild blast and non-blast acute acoustic trauma. Journal of Neurophysiology. 2017. doi: 10.1152/jn.00710.2016
  153. Tian, R., & Shi, R. Dimercaprol is an acrolein scavenger that mitigates acrolein-mediated PC-12 cells toxicity and reduces acrolein in rat following spinal cord injury. Journal of Neurochemistry. 2017. doi: 10.1111/jnc.14025
  154. Butler, B, Acosta, G, & Shi, R. Exogenous acrolein intensifies sensory hypersensitivity after spinal cord injury in rat. Journal of Neurological Sciences. 2017.  doi: 10.1016/j.jns.2017.05.039
  155. Cruz-Haces, M., Tang, J., Acosta, G., Fernandez, J., & Shi, R. Pathological corrleations between traumatic brain injury and chronic neurodegenerative diseases. Translational Neurodegeneration. 6:20, 2017. doi: 10.1186/s40035-017-0088-2
  156. Xiong, Y., Page, J. C., Narayanan, N., Wang, C., Jia, Z., Yue, F., Shi, X., Jin, W., Hu, K., Deng, M., Shi, R., Shan, T., Yang, G., & Kuang, S. Peripheral Neuropathy and Hindlimb Paralysis in a Mouse Model of Adipocyte-Specific Knockout of Lkb1. EBioMedicine. 24:127-136, 2017. doi: 10.1016/j.ebiom.2017.09.017
  157. Page, J. C., Park, J., Chen, Z., Cao, P., & Shi, R. Parallel evaluation of two potassium channel blockers in restoring conduction in mechanical spinal cord injury in rat. Journal of Neurotrauma. 35:1057-1068, 2018. doi: 10.1089/neu.2017.5297
  158. Ambaw, A., Zheng, L., Tambe, M., Strathearn, K., Acosta, G., Hubers, G., Liu, F., Herr, S., Tang, J., Truong, A., Walls, E., Pond, A., Rochet, J. C., & Shi, R. Acrolein-mediated neuronal cell death and alpha-synuclein aggregation: implications for Parkinson's disease. Molecular and Cellular Neuroscience. 88:70-82, 2018. doi: 10.1016/j.mcn.2018.01.006
  159. Tang, F., Guo, C., Ma, X., Zhang, J., Su, Y., Tian, R., Shi, R., Xia, Y., Wang, X., & Ouyang, Z. Rapid In Situ Profiling of Lipid C=C Location Isomers in Tissue Using Ambient Mass Spectrometry with Photochemical Reactions. Analytical chemistry. 90:512-5619, 2018. doi: 10.1021/acs.analchem.7b04675
  160. Lin, Y., Chen, Z., Tang, J., Cao, P., & Shi, R. Acrolein contributes to the neuropathic pain and neuron damage after ischemic-reperfusion spinal cord injury. Neuroscience. 384:120-130, 2018. doi: 10.1016/j.neuroscience.2018.05.029
  161. Tully, M., Tang, J., Zheng, L., Acosta, G., Tian, R., Hayward, L., Race, N., Mattson, D., & Shi, R. Systemic Acrolein Elevations in Mice with Experimental Autoimmune Encephalomyelitis and Patients with Multiple Sclerosis. Frontiers in Neurology. 9:420, 2018. doi: 10.3389/fneur.2018.00420
  162. Garcia-Gonzalez, D., Race, N., Voets, N., Jenkins, D., Sotiropoulos, S., Acosta, G., Cruz-Haces, M., Tang, J., Shi, R., & Jérusalem A.. Cognition based bTBI mechanistic criteria; a tool for preventative and therapeutic innovations. Scientific Reports. 8:10273, 2018. doi: 10.1038/s41598-018-28271-7
  163. Nguyen T, Nolan JK, Park H, Lam S, Fattah M, Page J, Joe H, Jun M, Lee H, Kim S, Shi R, Lee H. Facile fabrication of flexible glutamate biosensor using direct writing of platinum nanoparticle-based nanocomposite ink. Biosensors and Bioelectronics. 131: 257-266. 2019. doi: 10.1016/j.bios.2019.01.051
  164. Acosta G, Race N, Herr S, Fernandez J, Tang J, Rogers E, Shi R. Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration.  Molecular and Cellular Neuroscience. 98: 140-154, 2019. doi: 10.1016/j.mcn.2019.06.004
  165. Vike N, Tang J, Talavage T, Shi R, Rispoli J. Determination of acrolein-associated T1 and T2 relaxation times and noninvasive detection using nuclear magnetic resonance and magnetic resonance spectroscopy. Appl Magn Reson. 50: 1291–1303, 2019. doi: 10.1007/s00723-019-01148-2
  166. Shi L, Huang C, Luo Q, Rogers E, Xia Y, Liu W, Ma W, Zeng W, Gong L, Fang J, Tang L, Cheng A, Shi R, Chen Z. The association of iron and the pathologies of Parkinson’s diseases in MPTP/MPP+-induced neuronal degeneration in non-human primates and in cell culture. Front. Aging Neurosci. 30 August 2019. doi: 10.3389/fnagi.2019.00215
  167. Nolan J; Nguyen T; Fattah M; Page J; Shi R; Lee H.  Ex Vivo Electrochemical Measurement of Glutamate Release during Spinal Cord Injury. MethodsX. 6: 1894-1900, 2019. doi: 10.1016/j.mex.2019.08.008
  168. Huang C, Ma W, Luo Q, Shi L, Xia Y, Lao C, Liu W, Zou Y, Cheng A, Shi R, Chen Z.  Iron overload resulting from the chronic oral administration of ferric citrate induces parkinsonism phenotypes in middle-aged mice. Aging. 2019 Nov 15; 11(21): 9846–9861. doi: 10.18632/aging.102433
  169. Chong L, Tian R, Shi R, Ouyang Z, Xia Y. Coupling the Paternò-Büchi (PB) Reaction with Mass Spectrometry to Study Unsaturated Fatty Acids in Mouse Model of Multiple Sclerosis. Front. Chem., 26 November 2019 doi: 10.3389/fchem.2019.00807

Dr. Riyi Shi

Dr. Riyi Shi

Mari Hulman George Endowed Professor of Applied Neuroscience

Biomedical Engineering

Director, Center for Paralysis Research

Department of Basic Medical Sciences
College of Veterinary Medicine
Weldon School of Biomedical Engineering

Purdue University
West Lafayette, IN 47907-1244

Tel: (765) 494-6446
Fax: (765) 494-7605

Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN 47907, (765) 494-7607

© 2021 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by PVM Web Communications

If you have trouble accessing this page because of a disability, please contact PVM Web Communications at