How do we define poor performance?

Laurent Couëtil, DVM, PhD, Dip.ACVIM
Outline

• Poor performance definition
• Approach to poor performance
• Adaptation to exercise and training
• Factors limiting performance
• Causes of poor performance
• Clinical evaluation of the RT
• Exercise testing
Poor Performance Definition

• Decrease in performance level
 ▫ Acceptable level of performance previously

• Exercise intolerance
 ▫ Marked decrease in performance level
 ▫ Not capable of training at previous level

• Unable to compete at expected level
 ▫ Unproven horse
 ▫ Expected level based on physical characteristics, genetic potential or training status
 ▫ Training satisfactorily
Approach to poor performance evaluation

• Agreement with owner/trainer on complaint
 ▫ Decreased performance?
 ▫ Exercise intolerance?
 ▫ Expected level?

• Exercise intensity
 ▫ High (Ex. Racehorses)
 ▫ Moderate (Ex. Reining Horse)
 ▫ Low (Ex. 4-H Horse)

• Fitness level
Approach to poor performance evaluation

<table>
<thead>
<tr>
<th>Exercise Intensity</th>
<th>Performance</th>
<th>Disease severity</th>
<th>Sensitivity to testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>↓ performance</td>
<td>mild</td>
<td>high</td>
</tr>
<tr>
<td>Moderate</td>
<td>↓ performance / exercise intolerance</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Low</td>
<td>exercise intolerance</td>
<td>severe</td>
<td>mild</td>
</tr>
</tbody>
</table>
Approach to poor performance evaluation

- Compare individual’s previous and current measurements
 - Objective performance criteria (running time, finishing position, etc.)
 - Physiological parameters (heart rate, respiratory rate, etc.)
 - Guide therapy
 - Clinical signs (nasal discharge, cough, respiratory effort, etc.)
 - Response to therapy

- Compare parameters measured over an extended period of time
 - Objective performance criteria
 - Physiological parameters
 - Clinical signs
Adaptation to exercise

• Respiratory
 – $V_E \times 30$, $V_E =$ Expiratory Volume

• Cardio-Vascular
 – HR \times 8-10, HR = Heart Rate
 – CO \times 10, CO = Cardiac Output
 – [Hb] \times 2, Hb = Hemoglobin
Adaptation to exercise

- **Muscular**
 - > 80 % CO during strenuous exercise
- **Lactate**
 - Lactate is a by-product of glucose utilization without the presence of oxygen. With training, lactate levels are lower during strenuous exercise.
Adaptation to exercise

- \(\text{VO}_{2\text{max}} = 40 \times \text{VO}_{2\text{rest}} \)
- \(\text{VO}_2 \) & HR increase linearly with exercise intensity up to a maximum
- \(\text{VO}_{2\text{max}} \) = maximum oxygen consumption
- \(\text{VO}_{2\text{rest}} \) = oxygen consumption at rest
Adaptation to training

- Functional adaptations
 - Skeletal
 - Bones will respond to stresses applied to them
 - Where more force is applied, the bone responds by producing more bony tissue
 - See the picture to the right
Adaptation to training

- Cardiac Changes
 - Maximum heart rate increases
 - Increased mass of heart (cardiac muscle strengthens)
 - Number of oxygen carriers (hemoglobin) in red blood cells increase by 15%
Adaptation to training

- Muscular
 - Muscle fibers increase in size
 - Increased amount of red blood cells delivered to muscle cells (increased capillary density)

- Respiratory
 - No change with training in maximum volume of air that can be breathed per minute
Adaptation to training

- **VO$_2$max**
 - Exercise capacity
 - Athletic potential
 - Training \uparrow 10 – 25 %
Adaptation to training

• Lactate
 – A product of cells using energy without the presence of oxygen
 – Causes “the burn” when exercising heavily
 – Once fitness is achieved, the amount of lactate produced decreases
Adaptation to training

- Gas exchanges
 - Exercise
 - Training
 - $\text{PaO}_2 = \text{partial pressure of oxygen}$
 - This value decreases with speed in the fit horse
Adaptation to training

- **Heart rate**
 - Speed vs. HR
 - Speed @ VO$_{2\text{max}}$ = speed @ $V_{HR\text{max}}$
 - Training
 - V_{200}

![Graph showing heart rate vs. speed for fit and unfit horses](image-url)
Factors limiting performance

- Extrinsic factors
- Intrinsic factors
- Training
- Genetic

Performance

Poor performance evaluation
Factors limiting performance

<table>
<thead>
<tr>
<th>Exercise type</th>
<th>Limiting factor</th>
<th>Respiratory disease severity</th>
<th>Body system</th>
</tr>
</thead>
<tbody>
<tr>
<td>High intensity, short duration</td>
<td>Oxygen delivery</td>
<td>+</td>
<td>Respiratory</td>
</tr>
<tr>
<td>> 80% VO(2)({\text{max}})</td>
<td>Lactic acid production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate intensity, long duration</td>
<td>Combustible, hyperthermia, dehydration</td>
<td>++</td>
<td>Cardiovascular, Musculoskeletal</td>
</tr>
<tr>
<td>50-80 % VO(2)({\text{max}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low intensity, long duration</td>
<td>Fitness</td>
<td>+++</td>
<td>Musculoskeletal</td>
</tr>
<tr>
<td>< 50 % VO(2)({\text{max}})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clinical evaluation of the RT

- Respiratory system
 - Upper airway endoscopy at rest

Arytenoid chondritis

Subepiglottic Cyst
Clinical evaluation of the RT

- Respiratory system
 - Lower airway endoscopy post-exercise

Figure 6—Least square mean distance horses finished behind the winner as a function of severity of EIPH among Thoroughbred racehorses (n = 744) in Melbourne, Australia, examined between March 1 and June 18, 2003, for EIPH after racing. Error bars represent SE. *Significantly (P < 0.05) different from value for horses with grade 0 EIPH.

Hinchcliff et al. 2005
Clinical evaluation of the RT

• Respiratory system
 – Lower airway endoscopy post-exercise
 • Grade ≥ 2 associated with poor performance in THB race horses (Holcombe et al. 2006)
 • Grade ≥ 3 associated with poor performance in sport horses (Widmer et al. 2008)
Clinical evaluation of the RT

- **Respiratory system**
 - BALF neutrophilia (> 5 %)
 - IAD associated with poor performance
 - STBD (Rush 1995; Couroucé 2002)
 - THB (Fogarty 1991)
 - TW cytology
 - No association (Holcombe 2006)

Couetil et al. 1999
Clinical evaluation of the RT

- Respiratory system
 - BALF
 - EIPH
 - % hemosiderophages
 - [RBC]

Couetil et al. 1999
Advanced lung function tests

- Standard lung mechanics
- FE (forced expiration)
- FOM / IOS
Advanced lung function tests

- Open Plethysmography
 - Commercially available
 - RAO crisis
 - IAD (AHR)

-Courtesy Ambulatory Monitoring, Inc.
Exercise testing

- **Treadmill / Field**
 - **Indications**
 - Poor performance at moderate-high intensity exercise
 - Significance of abnormality found
 - **Advantages:**
 - Controlled environment
 - Standardized protocol
 - Numerous data collected
 - **Weaknesses:**
 - Gait differences
 - No rider
 - Costly
Exercise testing

- Evaluation focused on:
 - Upper airway (endoscopy)
 - Treadmill
 - Dynamic endoscopy in the field
 - Gas exchanges, ventilation
Exercise testing

Couëtil et al., Equine Vet J 1999

PaO2 (mmHg)

Control
IAD
EIPH
Exercise testing

- Cardiovascular function
 - Exercise testing
 - Field / Treadmill
 - \(V_{150} \) & \(V_{200} \)
Exercise testing

- Musculo-skeletal system
 - Fitness (V_{La4})
 - Tying-up

![Graph showing lactate levels and speed for healthy and unfit horses; CPK levels before and after exercise for healthy and tying-up horses]
Summary

<table>
<thead>
<tr>
<th>Exercise type</th>
<th>Respiratory disease</th>
<th>Diagnostic test</th>
<th>Other tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>High intensity, short duration</td>
<td>UAO</td>
<td>Endoscopy (dynamic)
BAL ± TW
Exercise testing
Sensitive LFT</td>
<td>Gait at high speed
Lactate
HR / ECG
CK pre-post
CBC</td>
</tr>
<tr>
<td></td>
<td>IAD, EIPH, Infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate intensity, long duration</td>
<td>UAO</td>
<td>Endoscopy (rest ± dynamic)
BAL ± TW
Exercise testing
Sensitive LFT</td>
<td>Lameness exam
Lactate
HR / ECG
CBC / electrolytes</td>
</tr>
<tr>
<td></td>
<td>IAD / RAO, Infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low intensity, long duration</td>
<td>UAO</td>
<td>Endoscopy (rest)
BAL ± TW
BG @ rest
LFT</td>
<td>Thoracic X-ray / US CBC</td>
</tr>
<tr>
<td></td>
<td>IAD / RAO, IPF, Infections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenging cases

- Unproven horse
 - Reference database
 - Systematic evaluation
 - Treadmill
 - Field
 - Cause of poor performance
 - Legitimate cause
 - Undiagnosed pathology
 - Limited ability / lack of fitness
 - Behavior / psychological problem
Questions?